Checkpoint defects leading to premature mitosis also cause endoreplication of DNA in Aspergillus nidulans.
نویسندگان
چکیده
The G2 DNA damage and slowing of S-phase checkpoints over mitosis function through tyrosine phosphorylation of NIMX(cdc2) in Aspergillus nidulans. We demonstrate that breaking these checkpoints leads to a defective premature mitosis followed by dramatic rereplication of genomic DNA. Two additional checkpoint functions, uvsB and uvsD, also cause the rereplication phenotype after their mutation allows premature mitosis in the presence of low concentrations of hydroxyurea. uvsB is shown to encode a rad3/ATR homologue, whereas uvsD displays homology to rad26, which has only previously been identified in Schizosaccharomyces pombe. uvsB(rad3) and uvsD(rad26) have G2 checkpoint functions over mitosis and another function essential for surviving DNA damage. The rereplication phenotype is accompanied by lack of NIME(cyclinB), but ectopic expression of active nondegradable NIME(cyclinB) does not arrest DNA rereplication. DNA rereplication can also be induced in cells that enter mitosis prematurely because of lack of tyrosine phosphorylation of NIMX(cdc2) and impaired anaphase-promoting complex function. The data demonstrate that lack of checkpoint control over mitosis can secondarily cause defects in the checkpoint system that prevents DNA rereplication in the absence of mitosis. This defines a new mechanism by which endoreplication of DNA can be triggered and maintained in eukaryotic cells.
منابع مشابه
The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans.
It is possible to cause G2 arrest in Aspergillus nidulans by inactivating either p34cdc2 or NIMA. We therefore investigated the negative control of these two mitosis-promoting kinases after DNA damage. DNA damage caused rapid Tyr15 phosphorylation of p34cdc2 and transient cell cycle arrest but had little effect on the activity of NIMA. Dividing cells deficient in Tyr15 phosphorylation of p34cdc...
متن کاملRegulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway.
In Aspergillus nidulans, germinating conidia undergo multiple rounds of nuclear division before the formation of the first septum. Previous characterization of temperature-sensitive sepB and sepJ mutations showed that although they block septation, they also cause moderate defects in chromosomal DNA metabolism. Results presented here demonstrate that a variety of other perturbations of chromoso...
متن کاملHypomorphic bimA(APC3) alleles cause errors in chromosome metabolism that activate the DNA damage checkpoint blocking cytokinesis in Aspergillus nidulans.
The Aspergillus nidulans sepI(+) gene has been implicated in the coordination of septation with nuclear division and cell growth. We find that the temperature-sensitive (ts) sepI1 mutation represents a novel allele of bimA(APC3), which encodes a conserved component of the anaphase-promoting complex/cyclosome (APC/C). We have characterized the septation, nuclear division, cell-cycle checkpoint d...
متن کاملThe Aspergillus nidulans uvsB gene encodes an ATM-related kinase required for multiple facets of the DNA damage response.
In Aspergillus nidulans, uvsB and uvsD belong to the same epistasis group of DNA repair mutants. Recent observations suggest that these genes are likely to control cell cycle checkpoint responses to DNA damage and incomplete replication. Consistent with this notion, we show here that UVSB is a member of the conserved family of ATM-related kinases. Phenotypic characterization of uvsB mutants sho...
متن کاملA screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis.
Cytoplasmic dynein is a ubiquitously expressed microtubule motor involved in vesicle transport, mitosis, nuclear migration, and spindle orientation. In the filamentous fungus Aspergillus nidulans, inactivation of cytoplasmic dynein, although not lethal, severely impairs nuclear migration. The role of dynein in mitosis and vesicle transport in this organism is unclear. To investigate the complet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 10 11 شماره
صفحات -
تاریخ انتشار 1999